
Simulating Network Lateral Movements through the

CyberBattleSim Web Platform∗

Jonathan Esteban1

Massachusetts Institute of Technology, Cambridge, USA
jesteban@mit.edu

Abstract

Modern cyber attacks demand immediate action plans based on an overwhelming
amount of information and options. Microsoft has made available a highly parameterizable
model of enterprise networks with the capability of simulating automated cyber-attacks.
We provide an extension of this project by means of a web platform. The platform allows
a user to model an enterprise network topology, interact with the topology manually, and
simulate an automated adversarial agent. Leveraging the CyberBattleSim toolkit, we en-
able the swift prototyping of different network configurations that can then be analyzed by
a defensive security team member either manually or automatically through the automated
agent. We demonstrate that the platform can simulate any network topology supported
by CyberBattleSim as well as evaluate different Q-Learning strategies. This in turn can
provide us with valuable insight regarding the progression of cyber attacks, aiding us at
generating appropriate cyber-attack response plans.

Contents

1 Introduction 2
1.1 Reinforcement Learning Within Cyber Security . 2
1.2 Contributions . 2
1.3 Motivation . 3

2 Related Work 3

3 Approach 3
3.1 Network Modeling . 4
3.2 Human-interactive simulation . 7
3.3 AI-learning simulation . 8
3.4 Backend Routing . 9

4 Results 9
4.1 Human Interaction with CTF Network Topology . 10
4.2 Q-Learning AI Interaction with CTF Network Topology 10

5 Conclusions 10

A Additional Figures 11

∗This work was co-funded by ”Fondo Europeo di Sviluppo Regionale Puglia POR Puglia 2014 – 2020 – Asse
I – Obiettivo specifico 1a – Azione 1.1 (RS) - Titolo Progetto: Suite prodotti Cybersecurity e SOC” and BV
TECH S.p.A. This work was co-funded by Cybersecurity at MIT Sloan (CAMS https://cams.mit.edu)

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

1 Introduction

Modern cyber attacks demand immediate critical decision making [4]. Determining the optimal
response to an adversary’s attack to an Industrial Control System (ICS) is a difficult challenge
given the overwhelming amount of information and options ICS operators have at their disposal.
Actions to preserve the system’s integrity come at different trade-offs for the system’s availability
and security. [2] [10]

As an ICS operator imposes security policies during a cyber attack, an adversary is able
to acquire new information and change their attacking strategies. This was seen in the case of
the Attacks of Ukraine’s Power Grids, which suffered two cyber attacks within a year. A post-
mortem analysis suggested that based on their experience with the first attack, the attackers
were able to adapt to new challenges and improve their adversarial strategy. [1]

The analysis also proposed a series of active defense recommendations. Among these was
a call to train both IT and OT network personnel in cybersecurity incident response plans.
The authors also recommended the development of active defense models that visualizes and
predicts the evolution of cyber attack strategies. This research aims at tackling both of these
recommendations.

To achieve these goals, we have developed a cyber-attack simulator platform: an interactive
web application that could help business professionals and operators improve their decision-
making abilities when faced with cyber attack crises. To achieve this, we leveraged Microsoft’s
CyberBattleSim research toolkit. CyberBattleSim allows for the simulation of post-breach
lateral movement during a cyber attack. [8] The toolkit abstracts a fixed network topology into
a collection of computer nodes, each with their own predefined vulnerabilities that an automated
adversary could exploit in order to continue moving through the network. CyberBattleSim uses
OpenAI Gym internally, thus providing an interactive environment for researchers to create
and apply different reinforcement learning models on the model network.

1.1 Reinforcement Learning Within Cyber Security

Reinforcement learning is a type of machine learning with which autonomous agents learn how
to conduct decision-making by interacting with their environment. [5] [6] Agents may execute
actions to interact with their environment, and their goal is to optimize some notion of reward.
One popular and successful application is found in video games where an environment is readily
available: the computer program implementing the game. [7] The player of the game is the
agent, the commands it takes are the actions, and the ultimate reward is winning the game. The
best reinforcement learning algorithms can learn effective strategies through repeated experience
by gradually learning what actions to take in each state of the environment. The more the agents
play the game, the smarter they get at it. Recent advances in the field of reinforcement learning
have shown we can successfully train autonomous agents that exceed human levels at playing
video games. [3]

1.2 Contributions

This paper offers the following contributions. First, a user interface to model the network
topology and computer node vulnerabilities. Second, an human-interactive attack simulator
that provides a sand-boxed environment to help red team users predict the evolution of cyber
incidents and understand the consequences of their response plans. Finally, an automated
attack simulator that employs the Q-Learning reinforcement learning technique to evaluate the
network’s security. The reward function of the automated adversaries is based on the discovery

2

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

and ownership of computer nodes in the network. Thus, the reinforcement learning model
outputs the optimal action to compromise the entire network.

1.3 Motivation

Our main motivation for this project lies in enabling security experts to investigate how auto-
mated agents interact within simulated network environments. We hope to see this project be
utilized by the cyber-security research community to test different automated attack strategies.
Lastly, we would like to reciprocate the gesture of Microsoft open-sourcing CyberBattleSim;
we hope to extend their contributions by providing a streamlined user-interface that effectively
showcases the modeling and simulation components.

2 Related Work

To our knowledge, there is no publicly available frontend-interface for CyberBattleSim. In fact,
research that makes use of the toolkit is very limited. We suppose that this is due to the fact
that the CyberBattleSim project is relatively new. However, we are confident that the toolkit’s
goal of enabling researchers to investigate RL learning in the context of computer networks will
garner academic attention in due time.

The paper “Incorporating Deception into CyberBattleSim for Autonomous Defense” by
Walter et. al. [9] demonstrates that CyberBattleSim is readily extensible and can be used to
investigate the effects of cyber deception within the toolkit. These deceptive elements included
Decoys, Honeypots, and Honeytokens, each with their own set of penalties. They investigated
how these deception techniques influenced the maximum expected cumulative reward of the
automated adversary as well as the percentage of attacker wins and the amount of wasted
resources. The paper showed that, as expected, the attacker’s rate of progress is inversely
proportional to the amount of deceptive elements on the network. Thus, the authors set the
stage for other researchers to design advanced autonomous defender agents that can employ
deceptive strategies.

This project contributes to the field of network simulation by extending Microsoft’s Cy-
berBattleSim project; we present a graphical web interface to model and simulate enterprise
networks. To ensure interoperability with CyberBattleSim, we directly exposed CyberBat-
tleSim’s inner mechanisms through an application programming interface (API) and created a
frontend wrapper for the parent project. Thus, we provide a user-interface for creating network
topologies, exploring topologies as a human attacker, and running automated AI strategies to
compromise simulated network environments.

3 Approach

Our technical contributions include a full-stack application that allows for the modeling of
network topology and visualization of cyber attacks on this network. This was achieved using
the frameworks Vue.js for the frontend and Flask for the backend. The frontend codebase
has three main components: network modeling, human-interactive simulation, and AI-agent
simulation. The backend Flask server receives actions from the user interface, passes them into
the CyberBattleSim toolkit, which in turn relays the response back to the user interface.

3

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 1: Network modeling interface on sample network topology.

3.1 Network Modeling

The network modeling component is where the user can create and tweak the network topology
abstraction. This network topology is visualized through a graph, where the nodes represent
a computer or computer system in the enterprise network and directed edges point to another
node obtained by exploiting a vulnerability or connecting via a leaked credential.

Besides adding or removing nodes to the graph, a user may edit various attributes of a
node, including: intrinsic value, vulnerabilities, services, available ports and firewalls. These
attributes are defined within the CyberBattleSim project and are described in Table 1. Many
of these attributes have their own nested properties, allowing the user to finely specify a node’s
behavior.

3.1.1 General Properties

The main properties of a node are shown within the ”General Properties” tab. These prop-
erties include: node ID, the intrinsic value of the node, the text displayed when the node is
compromised, a boolean representing whether an adversary has already captured the node, and
property tags. Newly created nodes are instantiated with universally unique identifiers (UUID)
as their ID. This preserves the invariant that no two nodes will have the same ID when created.
The frontend form validation also ensures that ID uniqueness is preserved. In order for a proper
CyberBattle Simulation to take place, at least one agent should be installed within a node. This

4

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Table 1: Technical Node Attributes

name description

services List of port/protocol the node is listening

vulnerabilities List of known vulnerabilities for the node

value Intrinsic value of the node (translates into a reward if the node gets
owned)

properties Properties of the nodes, some of which can imply further vulnera-
bilities

firewall Firewall configuration of the node

agent installed Attacker agent installed on the node? (i.e. is the node compro-
mised?)

privilege level Escalation level

reimagable Can the node be re-imaged by a defender agent?

owned string String displayed when the node gets owned

status Machine status: running or stopped

Figure 2: ”General Properties” tab within the network modeling interface.

ensures that the agent has an initial environment to attack from.

3.1.2 Vulnerabilities

Node vulnerabilities are abstracted with the following details in mind: outcome type, cost of
exploit, rate of successful exploitation, rate of detection, and whether the vulnerability requires
local or remote access to be executed. An example of a remote vulnerability could be a publicly
hosted site exposing SSH credentials. Conversely, a local vulnerability could be extracting
authentication token from a stolen device or escalating to administrator privileges from within
the node.

5

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 3: ”Vulnerabilities” tab within the network modeling interface.

CyberBattleSim provided us with several predefined outcome categories, including: leaked
credentials, leaked references to other computer nodes, leaked user data, and privilege escalation
on the node. Vulnerabilities can also be labeled as remote or local. Once a vulnerability has
been exploited, the outcome is presented to the adversary along with the reward associated
with the value of the node.

3.1.3 Services

Along with vulnerabilities, a node may also have running services. Services describe processes
which run on an exposed port which can be configured to require credentials for authentication.
For example, a web browser may expose an HTTPS service and a file transfer tool may expose
an SSH service under a credential.

6

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 4: ”Services” tab within the network modeling interface.

3.1.4 Firewall Rules

Finally, a user may add firewall rules to a node. Firewall rules can be used to block or allow
certain ports. These rules can be defined for both outgoing and incoming traffic. Ports that
are not explicitly allowed in the configuration are automatically assumed to be blocked. That
said, explicitly blocking a port allows a user to provide a reason for the block.

As the user modifies the enterprise network abstraction model on the frontend, the changes
are reflected on the CyberBattleSim backend model. Once the user is satisfied with the current
topology, they may now use the human-interactive attack simulator or the automated attack
simulator.

3.2 Human-interactive simulation

In red team versus blue team dynamics, the red team consists of offensive security strategists
who try to attack a company’s cyber-security defenses. The blue team in turn, defends against
and responds to the red team’s attack. We implemented the use-case of a human red team player
who tries to attack an organization’s cybersecurity defenses. In the scope of our project, a blue
team member would design the network topology, as described in the previous subsections, and
would hand it over to the red team player for them to try to compromise. The red team player
starts off in control of the node that the blue team player has configured to be initially breached.
This starting node may have low privileges, and may represent the gateway between public and
private domain, such as a web server. On this page, the player is presented with a sub-graph
containing discovered (green) and owned (red) nodes, a list of actions for the currently selected
node, and logs that inform the player of rewards or penalties.

The red team player’s goal is to maximize their cumulative reward by incrementally discov-
ering and taking ownership of nodes in the network. This component of the platform allows a

7

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 5: ”Firewall rules” tab within the network modeling interface.

human to move through the sand-boxed network, discovering new nodes as they exploit new
vulnerabilities and acquire hidden credentials. This mode could provide valuable insight into
how a human player would approach compromising the network. As designed by Microsoft’s
CyberBattleSim, the environment is partially observable, meaning that the agent does not know
of the nodes and edges of the network graph in advance. The red team player takes actions
to gradually explore the network from the nodes it currently owns. We support three kinds of
actions, which allows the player to run exploits as well as explore the network that is visible to
them. These actions are: running a local attack, running a remote attack, and connecting from
a source node via learned credentials. Local actions require that the node where the underlying
operation would take place is already owned by the player. After a node gets discovered or
owned, the player is given a reward, which represents the intrinsic value of the node.

3.3 AI-learning simulation

We also implemented the use-case of an automated AI player playing as the attacker using
Q-Learning, a type of reinforcement learning algorithm used by the CyberBattleSim project.
In this scenario, a blue team member would design the network topology, input the specific AI
learning simulation parameters (as defined in Table 3) and run the simulation. This component
of the site allows a for an AI adversary to move through the sand-boxed network, discovering
new nodes as it exploits new vulnerabilities and discovers hidden credentials. This mode can
be used to find Cyber Kill Chains, evaluate different Q-Learning strategies and learn about
different attack paths at a faster rate than a human player.

The component’s page presents the user with a list of parameters, and once submitted, shows
a live progress of the AI learning algorithm. As the simulation is running, the user may view
the reward-over-time chart and the sub-network that the AI agent can currently observe and

8

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Table 2: Q-Learning Parameters

name description

iteration count Maximum number of iterations in each episode

episode count Number of training episodes

gamma Gamma discount factor

learning rate Determines the weight of successful actions.

epsilon Explore vs Exploit: 0.0 to exploit the learned policy only without
exploration vs 1.0 to explore purely randomly

epsilon decay Epsilon gets multiplied by this value after each episode

attacker reward Creates goal to reach at least the specified cumulative total reward

low availability Creates goal to bring the availability to lower than the specified
Service Level Agreement (SLA) value

own at least Creates goal to own at least the specified number of nodes

own at least per-
cent

Creates goal to own at least the specified percentage of the network
nodes

interact with. Once complete, a gallery of figures is shown. These figures include progression
of total reward, network observability over time, as well as duration of episodes.

3.4 Backend Routing

The backend of the project involves a simple Flask server that relays user-submitted data into
CyberBattleSim’s internal model. All data is sanitized on the frontend and backend to keep
the network model’s preconditions consistent. Each action that the user can make on the
frontend has a corresponding API route exposed on the backend server. The source code of
CyberBattleSim was modified lightly to allow for the serialization and deserialization of the
data being transmitted.

4 Results

The goal for this project was to create a web platform in which a user can model network
topologies and interact with them either manually or via an AI agent. Crucially, the platform
must be highly interoperable with the CyberBattleSim project. Our metric for success was to
replicate CyberBattleSim’s capture-the-flag (CTF) topology with the network modeling com-
ponent and be able to carry out the same agent actions supported by CyberBattleSim. These
actions enable a human or AI agent to manipulate the environment.

9

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Table 3: Q-Learning CTF Simulation Parameters as described in Table 1

name value

iteration count 300

episode count 5

gamma 0.015

learning rate 0.9

epsilon 0.9

epsilon decay 0.75

attacker reward 0

low availability 1

own at least 0

own at least per-
cent

100%

4.1 Human Interaction with CTF Network Topology

The replicated CTF environment can be seen in Figure 1. Because every node property listed
in Table 1 can be configured, virtually any network topology can be abstracted into CyberBat-
tleSim’s model.

4.2 Q-Learning AI Interaction with CTF Network Topology

We applied Q-Learning to the CTF Network Topology to demonstrate the platform’s capability
of running CyberBattleSim reinforcement learning techniques on network models. Figures 8
through 11 display the results of running Q-Learning on the CTF Network with the parameters
in Table 3. The plots to the left of each figure show accumulated reward over time. Meanwhile,
network graphs to the right of each figure show the sub-network available to the AI agent, with
discovered nodes shown in green and owned nodes shown in red. The results demonstrate that
the web platform can be used to evaluate different Q-Learning strategies without the need of
using the CyberBattleSim platform directly.

5 Conclusions

This project provides a way to build and simulate enterprise networks, making it possible to
frame cybersecurity challenges in the context of reinforcement learning via a web platform. We
designed the platform interface with blue team and red team dynamics in mind; a blue team
member would design the network topology and would then hand it over to a red team player
for them to try to compromise and gain vulnerability insights. This tool shows that high-level
abstractions of cyber security concepts can help us understand how real cyber-agents would
behave in actual enterprise networks.

10

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

References

[1] Defense Use Case. Analysis of the cyber attack on the ukrainian power grid. Electricity Information
Sharing and Analysis Center (E-ISAC), 388:1–29, 2016.

[2] Xiaohe Fan, Kefeng Fan, Yong Wang, and Ruikang Zhou. Overview of cyber-security of industrial
control system. In 2015 international conference on cyber security of smart cities, industrial control
system and communications (SSIC), pages 1–7. IEEE, 2015.

[3] Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay, 2018.

[4] Ziad Ismail, Jean Leneutre, David Bateman, and Lin Chen. A game theoretical analysis of data
confidentiality attacks on smart-grid ami. Selected Areas in Communications, IEEE Journal on,
32:1486–1499, 07 2014.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[6] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep reinforcement learning for cyber security. IEEE
Transactions on Neural Networks and Learning Systems, page 1–17, 2021.

[7] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep
reinforcement learning in video games, 2019.

[8] Microsoft Defender Research Team et al. Cyberbattlesim, 2021.

[9] Erich Walter, Kimberly Ferguson-Walter, and Ahmad Ridley. Incorporating deception into cyber-
battlesim for autonomous defense. arXiv preprint arXiv:2108.13980, 2021.

[10] Heng Zhang, Yuanchao Shu, Peng Cheng, and Jiming Chen. Privacy and performance trade-off
in cyber-physical systems. IEEE Network, 30(2):62–66, 2016.

A Additional Figures

11

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 6: Attack progression on sample network topology showcasing a blocked action via a
firewall, resulting in a score penalty.

Figure 7: Entire network has been compromised and all flags have been acquired.

12

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 8: Step 1 of attack progression under Q-Learning AI agent

Figure 9: Step 3 of attack progression under Q-Learning AI agent

13

Simulating Network Lateral Movements through the CyberBattleSim Web Platform Esteban

Figure 10: Step 4 of attack progression under Q-Learning AI agent

Figure 11: Step 5 of attack progression under Q-Learning AI agent

14

	Introduction
	Reinforcement Learning Within Cyber Security
	Contributions
	Motivation

	Related Work
	Approach
	Network Modeling
	Human-interactive simulation
	AI-learning simulation
	Backend Routing

	Results
	Human Interaction with CTF Network Topology
	Q-Learning AI Interaction with CTF Network Topology

	Conclusions
	Additional Figures

